| // Go support for Protocol Buffers - Google's data interchange format | 
 | // | 
 | // Copyright 2010 The Go Authors.  All rights reserved. | 
 | // https://github.com/golang/protobuf | 
 | // | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | // notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | // copyright notice, this list of conditions and the following disclaimer | 
 | // in the documentation and/or other materials provided with the | 
 | // distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | // contributors may be used to endorse or promote products derived from | 
 | // this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | package proto | 
 |  | 
 | /* | 
 |  * Routines for decoding protocol buffer data to construct in-memory representations. | 
 |  */ | 
 |  | 
 | import ( | 
 | 	"errors" | 
 | 	"fmt" | 
 | 	"io" | 
 | 	"os" | 
 | 	"reflect" | 
 | ) | 
 |  | 
 | // errOverflow is returned when an integer is too large to be represented. | 
 | var errOverflow = errors.New("proto: integer overflow") | 
 |  | 
 | // ErrInternalBadWireType is returned by generated code when an incorrect | 
 | // wire type is encountered. It does not get returned to user code. | 
 | var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof") | 
 |  | 
 | // The fundamental decoders that interpret bytes on the wire. | 
 | // Those that take integer types all return uint64 and are | 
 | // therefore of type valueDecoder. | 
 |  | 
 | // DecodeVarint reads a varint-encoded integer from the slice. | 
 | // It returns the integer and the number of bytes consumed, or | 
 | // zero if there is not enough. | 
 | // This is the format for the | 
 | // int32, int64, uint32, uint64, bool, and enum | 
 | // protocol buffer types. | 
 | func DecodeVarint(buf []byte) (x uint64, n int) { | 
 | 	// x, n already 0 | 
 | 	for shift := uint(0); shift < 64; shift += 7 { | 
 | 		if n >= len(buf) { | 
 | 			return 0, 0 | 
 | 		} | 
 | 		b := uint64(buf[n]) | 
 | 		n++ | 
 | 		x |= (b & 0x7F) << shift | 
 | 		if (b & 0x80) == 0 { | 
 | 			return x, n | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// The number is too large to represent in a 64-bit value. | 
 | 	return 0, 0 | 
 | } | 
 |  | 
 | // DecodeVarint reads a varint-encoded integer from the Buffer. | 
 | // This is the format for the | 
 | // int32, int64, uint32, uint64, bool, and enum | 
 | // protocol buffer types. | 
 | func (p *Buffer) DecodeVarint() (x uint64, err error) { | 
 | 	// x, err already 0 | 
 |  | 
 | 	i := p.index | 
 | 	l := len(p.buf) | 
 |  | 
 | 	for shift := uint(0); shift < 64; shift += 7 { | 
 | 		if i >= l { | 
 | 			err = io.ErrUnexpectedEOF | 
 | 			return | 
 | 		} | 
 | 		b := p.buf[i] | 
 | 		i++ | 
 | 		x |= (uint64(b) & 0x7F) << shift | 
 | 		if b < 0x80 { | 
 | 			p.index = i | 
 | 			return | 
 | 		} | 
 | 	} | 
 |  | 
 | 	// The number is too large to represent in a 64-bit value. | 
 | 	err = errOverflow | 
 | 	return | 
 | } | 
 |  | 
 | // DecodeFixed64 reads a 64-bit integer from the Buffer. | 
 | // This is the format for the | 
 | // fixed64, sfixed64, and double protocol buffer types. | 
 | func (p *Buffer) DecodeFixed64() (x uint64, err error) { | 
 | 	// x, err already 0 | 
 | 	i := p.index + 8 | 
 | 	if i < 0 || i > len(p.buf) { | 
 | 		err = io.ErrUnexpectedEOF | 
 | 		return | 
 | 	} | 
 | 	p.index = i | 
 |  | 
 | 	x = uint64(p.buf[i-8]) | 
 | 	x |= uint64(p.buf[i-7]) << 8 | 
 | 	x |= uint64(p.buf[i-6]) << 16 | 
 | 	x |= uint64(p.buf[i-5]) << 24 | 
 | 	x |= uint64(p.buf[i-4]) << 32 | 
 | 	x |= uint64(p.buf[i-3]) << 40 | 
 | 	x |= uint64(p.buf[i-2]) << 48 | 
 | 	x |= uint64(p.buf[i-1]) << 56 | 
 | 	return | 
 | } | 
 |  | 
 | // DecodeFixed32 reads a 32-bit integer from the Buffer. | 
 | // This is the format for the | 
 | // fixed32, sfixed32, and float protocol buffer types. | 
 | func (p *Buffer) DecodeFixed32() (x uint64, err error) { | 
 | 	// x, err already 0 | 
 | 	i := p.index + 4 | 
 | 	if i < 0 || i > len(p.buf) { | 
 | 		err = io.ErrUnexpectedEOF | 
 | 		return | 
 | 	} | 
 | 	p.index = i | 
 |  | 
 | 	x = uint64(p.buf[i-4]) | 
 | 	x |= uint64(p.buf[i-3]) << 8 | 
 | 	x |= uint64(p.buf[i-2]) << 16 | 
 | 	x |= uint64(p.buf[i-1]) << 24 | 
 | 	return | 
 | } | 
 |  | 
 | // DecodeZigzag64 reads a zigzag-encoded 64-bit integer | 
 | // from the Buffer. | 
 | // This is the format used for the sint64 protocol buffer type. | 
 | func (p *Buffer) DecodeZigzag64() (x uint64, err error) { | 
 | 	x, err = p.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return | 
 | 	} | 
 | 	x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63) | 
 | 	return | 
 | } | 
 |  | 
 | // DecodeZigzag32 reads a zigzag-encoded 32-bit integer | 
 | // from  the Buffer. | 
 | // This is the format used for the sint32 protocol buffer type. | 
 | func (p *Buffer) DecodeZigzag32() (x uint64, err error) { | 
 | 	x, err = p.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return | 
 | 	} | 
 | 	x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31)) | 
 | 	return | 
 | } | 
 |  | 
 | // These are not ValueDecoders: they produce an array of bytes or a string. | 
 | // bytes, embedded messages | 
 |  | 
 | // DecodeRawBytes reads a count-delimited byte buffer from the Buffer. | 
 | // This is the format used for the bytes protocol buffer | 
 | // type and for embedded messages. | 
 | func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) { | 
 | 	n, err := p.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return nil, err | 
 | 	} | 
 |  | 
 | 	nb := int(n) | 
 | 	if nb < 0 { | 
 | 		return nil, fmt.Errorf("proto: bad byte length %d", nb) | 
 | 	} | 
 | 	end := p.index + nb | 
 | 	if end < p.index || end > len(p.buf) { | 
 | 		return nil, io.ErrUnexpectedEOF | 
 | 	} | 
 |  | 
 | 	if !alloc { | 
 | 		// todo: check if can get more uses of alloc=false | 
 | 		buf = p.buf[p.index:end] | 
 | 		p.index += nb | 
 | 		return | 
 | 	} | 
 |  | 
 | 	buf = make([]byte, nb) | 
 | 	copy(buf, p.buf[p.index:]) | 
 | 	p.index += nb | 
 | 	return | 
 | } | 
 |  | 
 | // DecodeStringBytes reads an encoded string from the Buffer. | 
 | // This is the format used for the proto2 string type. | 
 | func (p *Buffer) DecodeStringBytes() (s string, err error) { | 
 | 	buf, err := p.DecodeRawBytes(false) | 
 | 	if err != nil { | 
 | 		return | 
 | 	} | 
 | 	return string(buf), nil | 
 | } | 
 |  | 
 | // Skip the next item in the buffer. Its wire type is decoded and presented as an argument. | 
 | // If the protocol buffer has extensions, and the field matches, add it as an extension. | 
 | // Otherwise, if the XXX_unrecognized field exists, append the skipped data there. | 
 | func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error { | 
 | 	oi := o.index | 
 |  | 
 | 	err := o.skip(t, tag, wire) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	if !unrecField.IsValid() { | 
 | 		return nil | 
 | 	} | 
 |  | 
 | 	ptr := structPointer_Bytes(base, unrecField) | 
 |  | 
 | 	// Add the skipped field to struct field | 
 | 	obuf := o.buf | 
 |  | 
 | 	o.buf = *ptr | 
 | 	o.EncodeVarint(uint64(tag<<3 | wire)) | 
 | 	*ptr = append(o.buf, obuf[oi:o.index]...) | 
 |  | 
 | 	o.buf = obuf | 
 |  | 
 | 	return nil | 
 | } | 
 |  | 
 | // Skip the next item in the buffer. Its wire type is decoded and presented as an argument. | 
 | func (o *Buffer) skip(t reflect.Type, tag, wire int) error { | 
 |  | 
 | 	var u uint64 | 
 | 	var err error | 
 |  | 
 | 	switch wire { | 
 | 	case WireVarint: | 
 | 		_, err = o.DecodeVarint() | 
 | 	case WireFixed64: | 
 | 		_, err = o.DecodeFixed64() | 
 | 	case WireBytes: | 
 | 		_, err = o.DecodeRawBytes(false) | 
 | 	case WireFixed32: | 
 | 		_, err = o.DecodeFixed32() | 
 | 	case WireStartGroup: | 
 | 		for { | 
 | 			u, err = o.DecodeVarint() | 
 | 			if err != nil { | 
 | 				break | 
 | 			} | 
 | 			fwire := int(u & 0x7) | 
 | 			if fwire == WireEndGroup { | 
 | 				break | 
 | 			} | 
 | 			ftag := int(u >> 3) | 
 | 			err = o.skip(t, ftag, fwire) | 
 | 			if err != nil { | 
 | 				break | 
 | 			} | 
 | 		} | 
 | 	default: | 
 | 		err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t) | 
 | 	} | 
 | 	return err | 
 | } | 
 |  | 
 | // Unmarshaler is the interface representing objects that can | 
 | // unmarshal themselves.  The method should reset the receiver before | 
 | // decoding starts.  The argument points to data that may be | 
 | // overwritten, so implementations should not keep references to the | 
 | // buffer. | 
 | type Unmarshaler interface { | 
 | 	Unmarshal([]byte) error | 
 | } | 
 |  | 
 | // Unmarshal parses the protocol buffer representation in buf and places the | 
 | // decoded result in pb.  If the struct underlying pb does not match | 
 | // the data in buf, the results can be unpredictable. | 
 | // | 
 | // Unmarshal resets pb before starting to unmarshal, so any | 
 | // existing data in pb is always removed. Use UnmarshalMerge | 
 | // to preserve and append to existing data. | 
 | func Unmarshal(buf []byte, pb Message) error { | 
 | 	pb.Reset() | 
 | 	return UnmarshalMerge(buf, pb) | 
 | } | 
 |  | 
 | // UnmarshalMerge parses the protocol buffer representation in buf and | 
 | // writes the decoded result to pb.  If the struct underlying pb does not match | 
 | // the data in buf, the results can be unpredictable. | 
 | // | 
 | // UnmarshalMerge merges into existing data in pb. | 
 | // Most code should use Unmarshal instead. | 
 | func UnmarshalMerge(buf []byte, pb Message) error { | 
 | 	// If the object can unmarshal itself, let it. | 
 | 	if u, ok := pb.(Unmarshaler); ok { | 
 | 		return u.Unmarshal(buf) | 
 | 	} | 
 | 	return NewBuffer(buf).Unmarshal(pb) | 
 | } | 
 |  | 
 | // DecodeMessage reads a count-delimited message from the Buffer. | 
 | func (p *Buffer) DecodeMessage(pb Message) error { | 
 | 	enc, err := p.DecodeRawBytes(false) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	return NewBuffer(enc).Unmarshal(pb) | 
 | } | 
 |  | 
 | // DecodeGroup reads a tag-delimited group from the Buffer. | 
 | func (p *Buffer) DecodeGroup(pb Message) error { | 
 | 	typ, base, err := getbase(pb) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base) | 
 | } | 
 |  | 
 | // Unmarshal parses the protocol buffer representation in the | 
 | // Buffer and places the decoded result in pb.  If the struct | 
 | // underlying pb does not match the data in the buffer, the results can be | 
 | // unpredictable. | 
 | func (p *Buffer) Unmarshal(pb Message) error { | 
 | 	// If the object can unmarshal itself, let it. | 
 | 	if u, ok := pb.(Unmarshaler); ok { | 
 | 		err := u.Unmarshal(p.buf[p.index:]) | 
 | 		p.index = len(p.buf) | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	typ, base, err := getbase(pb) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base) | 
 |  | 
 | 	if collectStats { | 
 | 		stats.Decode++ | 
 | 	} | 
 |  | 
 | 	return err | 
 | } | 
 |  | 
 | // unmarshalType does the work of unmarshaling a structure. | 
 | func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error { | 
 | 	var state errorState | 
 | 	required, reqFields := prop.reqCount, uint64(0) | 
 |  | 
 | 	var err error | 
 | 	for err == nil && o.index < len(o.buf) { | 
 | 		oi := o.index | 
 | 		var u uint64 | 
 | 		u, err = o.DecodeVarint() | 
 | 		if err != nil { | 
 | 			break | 
 | 		} | 
 | 		wire := int(u & 0x7) | 
 | 		if wire == WireEndGroup { | 
 | 			if is_group { | 
 | 				return nil // input is satisfied | 
 | 			} | 
 | 			return fmt.Errorf("proto: %s: wiretype end group for non-group", st) | 
 | 		} | 
 | 		tag := int(u >> 3) | 
 | 		if tag <= 0 { | 
 | 			return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire) | 
 | 		} | 
 | 		fieldnum, ok := prop.decoderTags.get(tag) | 
 | 		if !ok { | 
 | 			// Maybe it's an extension? | 
 | 			if prop.extendable { | 
 | 				if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) { | 
 | 					if err = o.skip(st, tag, wire); err == nil { | 
 | 						ext := e.ExtensionMap()[int32(tag)] // may be missing | 
 | 						ext.enc = append(ext.enc, o.buf[oi:o.index]...) | 
 | 						e.ExtensionMap()[int32(tag)] = ext | 
 | 					} | 
 | 					continue | 
 | 				} | 
 | 			} | 
 | 			// Maybe it's a oneof? | 
 | 			if prop.oneofUnmarshaler != nil { | 
 | 				m := structPointer_Interface(base, st).(Message) | 
 | 				// First return value indicates whether tag is a oneof field. | 
 | 				ok, err = prop.oneofUnmarshaler(m, tag, wire, o) | 
 | 				if err == ErrInternalBadWireType { | 
 | 					// Map the error to something more descriptive. | 
 | 					// Do the formatting here to save generated code space. | 
 | 					err = fmt.Errorf("bad wiretype for oneof field in %T", m) | 
 | 				} | 
 | 				if ok { | 
 | 					continue | 
 | 				} | 
 | 			} | 
 | 			err = o.skipAndSave(st, tag, wire, base, prop.unrecField) | 
 | 			continue | 
 | 		} | 
 | 		p := prop.Prop[fieldnum] | 
 |  | 
 | 		if p.dec == nil { | 
 | 			fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name) | 
 | 			continue | 
 | 		} | 
 | 		dec := p.dec | 
 | 		if wire != WireStartGroup && wire != p.WireType { | 
 | 			if wire == WireBytes && p.packedDec != nil { | 
 | 				// a packable field | 
 | 				dec = p.packedDec | 
 | 			} else { | 
 | 				err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType) | 
 | 				continue | 
 | 			} | 
 | 		} | 
 | 		decErr := dec(o, p, base) | 
 | 		if decErr != nil && !state.shouldContinue(decErr, p) { | 
 | 			err = decErr | 
 | 		} | 
 | 		if err == nil && p.Required { | 
 | 			// Successfully decoded a required field. | 
 | 			if tag <= 64 { | 
 | 				// use bitmap for fields 1-64 to catch field reuse. | 
 | 				var mask uint64 = 1 << uint64(tag-1) | 
 | 				if reqFields&mask == 0 { | 
 | 					// new required field | 
 | 					reqFields |= mask | 
 | 					required-- | 
 | 				} | 
 | 			} else { | 
 | 				// This is imprecise. It can be fooled by a required field | 
 | 				// with a tag > 64 that is encoded twice; that's very rare. | 
 | 				// A fully correct implementation would require allocating | 
 | 				// a data structure, which we would like to avoid. | 
 | 				required-- | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if err == nil { | 
 | 		if is_group { | 
 | 			return io.ErrUnexpectedEOF | 
 | 		} | 
 | 		if state.err != nil { | 
 | 			return state.err | 
 | 		} | 
 | 		if required > 0 { | 
 | 			// Not enough information to determine the exact field. If we use extra | 
 | 			// CPU, we could determine the field only if the missing required field | 
 | 			// has a tag <= 64 and we check reqFields. | 
 | 			return &RequiredNotSetError{"{Unknown}"} | 
 | 		} | 
 | 	} | 
 | 	return err | 
 | } | 
 |  | 
 | // Individual type decoders | 
 | // For each, | 
 | //	u is the decoded value, | 
 | //	v is a pointer to the field (pointer) in the struct | 
 |  | 
 | // Sizes of the pools to allocate inside the Buffer. | 
 | // The goal is modest amortization and allocation | 
 | // on at least 16-byte boundaries. | 
 | const ( | 
 | 	boolPoolSize   = 16 | 
 | 	uint32PoolSize = 8 | 
 | 	uint64PoolSize = 4 | 
 | ) | 
 |  | 
 | // Decode a bool. | 
 | func (o *Buffer) dec_bool(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	if len(o.bools) == 0 { | 
 | 		o.bools = make([]bool, boolPoolSize) | 
 | 	} | 
 | 	o.bools[0] = u != 0 | 
 | 	*structPointer_Bool(base, p.field) = &o.bools[0] | 
 | 	o.bools = o.bools[1:] | 
 | 	return nil | 
 | } | 
 |  | 
 | func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	*structPointer_BoolVal(base, p.field) = u != 0 | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode an int32. | 
 | func (o *Buffer) dec_int32(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	word32_Set(structPointer_Word32(base, p.field), o, uint32(u)) | 
 | 	return nil | 
 | } | 
 |  | 
 | func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u)) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode an int64. | 
 | func (o *Buffer) dec_int64(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	word64_Set(structPointer_Word64(base, p.field), o, u) | 
 | 	return nil | 
 | } | 
 |  | 
 | func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	word64Val_Set(structPointer_Word64Val(base, p.field), o, u) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a string. | 
 | func (o *Buffer) dec_string(p *Properties, base structPointer) error { | 
 | 	s, err := o.DecodeStringBytes() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	*structPointer_String(base, p.field) = &s | 
 | 	return nil | 
 | } | 
 |  | 
 | func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error { | 
 | 	s, err := o.DecodeStringBytes() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	*structPointer_StringVal(base, p.field) = s | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of bytes ([]byte). | 
 | func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error { | 
 | 	b, err := o.DecodeRawBytes(true) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	*structPointer_Bytes(base, p.field) = b | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of bools ([]bool). | 
 | func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	v := structPointer_BoolSlice(base, p.field) | 
 | 	*v = append(*v, u != 0) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of bools ([]bool) in packed format. | 
 | func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error { | 
 | 	v := structPointer_BoolSlice(base, p.field) | 
 |  | 
 | 	nn, err := o.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	nb := int(nn) // number of bytes of encoded bools | 
 | 	fin := o.index + nb | 
 | 	if fin < o.index { | 
 | 		return errOverflow | 
 | 	} | 
 |  | 
 | 	y := *v | 
 | 	for o.index < fin { | 
 | 		u, err := p.valDec(o) | 
 | 		if err != nil { | 
 | 			return err | 
 | 		} | 
 | 		y = append(y, u != 0) | 
 | 	} | 
 |  | 
 | 	*v = y | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of int32s ([]int32). | 
 | func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	structPointer_Word32Slice(base, p.field).Append(uint32(u)) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of int32s ([]int32) in packed format. | 
 | func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error { | 
 | 	v := structPointer_Word32Slice(base, p.field) | 
 |  | 
 | 	nn, err := o.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	nb := int(nn) // number of bytes of encoded int32s | 
 |  | 
 | 	fin := o.index + nb | 
 | 	if fin < o.index { | 
 | 		return errOverflow | 
 | 	} | 
 | 	for o.index < fin { | 
 | 		u, err := p.valDec(o) | 
 | 		if err != nil { | 
 | 			return err | 
 | 		} | 
 | 		v.Append(uint32(u)) | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of int64s ([]int64). | 
 | func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error { | 
 | 	u, err := p.valDec(o) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	structPointer_Word64Slice(base, p.field).Append(u) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of int64s ([]int64) in packed format. | 
 | func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error { | 
 | 	v := structPointer_Word64Slice(base, p.field) | 
 |  | 
 | 	nn, err := o.DecodeVarint() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	nb := int(nn) // number of bytes of encoded int64s | 
 |  | 
 | 	fin := o.index + nb | 
 | 	if fin < o.index { | 
 | 		return errOverflow | 
 | 	} | 
 | 	for o.index < fin { | 
 | 		u, err := p.valDec(o) | 
 | 		if err != nil { | 
 | 			return err | 
 | 		} | 
 | 		v.Append(u) | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of strings ([]string). | 
 | func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error { | 
 | 	s, err := o.DecodeStringBytes() | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	v := structPointer_StringSlice(base, p.field) | 
 | 	*v = append(*v, s) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a slice of slice of bytes ([][]byte). | 
 | func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error { | 
 | 	b, err := o.DecodeRawBytes(true) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	v := structPointer_BytesSlice(base, p.field) | 
 | 	*v = append(*v, b) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a map field. | 
 | func (o *Buffer) dec_new_map(p *Properties, base structPointer) error { | 
 | 	raw, err := o.DecodeRawBytes(false) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 | 	oi := o.index       // index at the end of this map entry | 
 | 	o.index -= len(raw) // move buffer back to start of map entry | 
 |  | 
 | 	mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V | 
 | 	if mptr.Elem().IsNil() { | 
 | 		mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem())) | 
 | 	} | 
 | 	v := mptr.Elem() // map[K]V | 
 |  | 
 | 	// Prepare addressable doubly-indirect placeholders for the key and value types. | 
 | 	// See enc_new_map for why. | 
 | 	keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K | 
 | 	keybase := toStructPointer(keyptr.Addr())                  // **K | 
 |  | 
 | 	var valbase structPointer | 
 | 	var valptr reflect.Value | 
 | 	switch p.mtype.Elem().Kind() { | 
 | 	case reflect.Slice: | 
 | 		// []byte | 
 | 		var dummy []byte | 
 | 		valptr = reflect.ValueOf(&dummy)  // *[]byte | 
 | 		valbase = toStructPointer(valptr) // *[]byte | 
 | 	case reflect.Ptr: | 
 | 		// message; valptr is **Msg; need to allocate the intermediate pointer | 
 | 		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V | 
 | 		valptr.Set(reflect.New(valptr.Type().Elem())) | 
 | 		valbase = toStructPointer(valptr) | 
 | 	default: | 
 | 		// everything else | 
 | 		valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V | 
 | 		valbase = toStructPointer(valptr.Addr())                   // **V | 
 | 	} | 
 |  | 
 | 	// Decode. | 
 | 	// This parses a restricted wire format, namely the encoding of a message | 
 | 	// with two fields. See enc_new_map for the format. | 
 | 	for o.index < oi { | 
 | 		// tagcode for key and value properties are always a single byte | 
 | 		// because they have tags 1 and 2. | 
 | 		tagcode := o.buf[o.index] | 
 | 		o.index++ | 
 | 		switch tagcode { | 
 | 		case p.mkeyprop.tagcode[0]: | 
 | 			if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil { | 
 | 				return err | 
 | 			} | 
 | 		case p.mvalprop.tagcode[0]: | 
 | 			if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil { | 
 | 				return err | 
 | 			} | 
 | 		default: | 
 | 			// TODO: Should we silently skip this instead? | 
 | 			return fmt.Errorf("proto: bad map data tag %d", raw[0]) | 
 | 		} | 
 | 	} | 
 | 	keyelem, valelem := keyptr.Elem(), valptr.Elem() | 
 | 	if !keyelem.IsValid() || !valelem.IsValid() { | 
 | 		// We did not decode the key or the value in the map entry. | 
 | 		// Either way, it's an invalid map entry. | 
 | 		return fmt.Errorf("proto: bad map data: missing key/val") | 
 | 	} | 
 |  | 
 | 	v.SetMapIndex(keyelem, valelem) | 
 | 	return nil | 
 | } | 
 |  | 
 | // Decode a group. | 
 | func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error { | 
 | 	bas := structPointer_GetStructPointer(base, p.field) | 
 | 	if structPointer_IsNil(bas) { | 
 | 		// allocate new nested message | 
 | 		bas = toStructPointer(reflect.New(p.stype)) | 
 | 		structPointer_SetStructPointer(base, p.field, bas) | 
 | 	} | 
 | 	return o.unmarshalType(p.stype, p.sprop, true, bas) | 
 | } | 
 |  | 
 | // Decode an embedded message. | 
 | func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) { | 
 | 	raw, e := o.DecodeRawBytes(false) | 
 | 	if e != nil { | 
 | 		return e | 
 | 	} | 
 |  | 
 | 	bas := structPointer_GetStructPointer(base, p.field) | 
 | 	if structPointer_IsNil(bas) { | 
 | 		// allocate new nested message | 
 | 		bas = toStructPointer(reflect.New(p.stype)) | 
 | 		structPointer_SetStructPointer(base, p.field, bas) | 
 | 	} | 
 |  | 
 | 	// If the object can unmarshal itself, let it. | 
 | 	if p.isUnmarshaler { | 
 | 		iv := structPointer_Interface(bas, p.stype) | 
 | 		return iv.(Unmarshaler).Unmarshal(raw) | 
 | 	} | 
 |  | 
 | 	obuf := o.buf | 
 | 	oi := o.index | 
 | 	o.buf = raw | 
 | 	o.index = 0 | 
 |  | 
 | 	err = o.unmarshalType(p.stype, p.sprop, false, bas) | 
 | 	o.buf = obuf | 
 | 	o.index = oi | 
 |  | 
 | 	return err | 
 | } | 
 |  | 
 | // Decode a slice of embedded messages. | 
 | func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error { | 
 | 	return o.dec_slice_struct(p, false, base) | 
 | } | 
 |  | 
 | // Decode a slice of embedded groups. | 
 | func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error { | 
 | 	return o.dec_slice_struct(p, true, base) | 
 | } | 
 |  | 
 | // Decode a slice of structs ([]*struct). | 
 | func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error { | 
 | 	v := reflect.New(p.stype) | 
 | 	bas := toStructPointer(v) | 
 | 	structPointer_StructPointerSlice(base, p.field).Append(bas) | 
 |  | 
 | 	if is_group { | 
 | 		err := o.unmarshalType(p.stype, p.sprop, is_group, bas) | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	raw, err := o.DecodeRawBytes(false) | 
 | 	if err != nil { | 
 | 		return err | 
 | 	} | 
 |  | 
 | 	// If the object can unmarshal itself, let it. | 
 | 	if p.isUnmarshaler { | 
 | 		iv := v.Interface() | 
 | 		return iv.(Unmarshaler).Unmarshal(raw) | 
 | 	} | 
 |  | 
 | 	obuf := o.buf | 
 | 	oi := o.index | 
 | 	o.buf = raw | 
 | 	o.index = 0 | 
 |  | 
 | 	err = o.unmarshalType(p.stype, p.sprop, is_group, bas) | 
 |  | 
 | 	o.buf = obuf | 
 | 	o.index = oi | 
 |  | 
 | 	return err | 
 | } |